Performance Analysis of Kalman Filter in Computed Tomography Thorax for Image Denoising

Author:

Gupta Manoj1,Lechner Jörg1,Agarwal Basant2

Affiliation:

1. Department of Electronics and Communication Engineering, JECRC University Jaipur, India

2. Department of Computer Science & Engineering, SKIT Jaipur, India

Abstract

: Medical image processing is a very important field of study due to its large number of applications in human life. For diagnosis of any disease, several methods of medical image acquisition are possible such as Ultrasound (US), Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Depending upon the type of image acquisition, different types of noise can occur. Background: The most common types of noises in medical images are Gaussian noise, Speckle noise, Poisson noise, Rician noise and Salt & Pepper noise. The related noise models and distributions are described in this paper. We compare several filtering methods for denoising the mentioned types of noise. Objective: The main purpose of this paper is to compare well-known filtering methods such as arithmetic mean, median and enhanced lee filter with only rarely used filtering methods like Kalman filter as well as with relative new methods like Non-Local Means (NLM) filter. Methods: To compare these different filtering methods, we use comparative parameters like Root Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR), Mean Structural Similarity (MSSIM), Edge Preservation Index (EPI) and the Universal Image Quality Index (UIQI). Results: The processed images are shown for a specific noise density and noise variance. We show that the Kalman filter performs better than Mean, Median and Enhanced Lee filter for removing Gaussian, Speckle, Poisson and Rician noise. Conclusion: Experimental results show that the Kalman filter provides better results as compared to other methods. It could be also a good alternative to NLM filter due to almost equal results and lower computation time.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3