Affiliation:
1. Department of Computer Science & Engineering, Delhi Technological University, Delhi, India
Abstract
Background:
Sentiment analysis of big data such as Twitter primarily aids the organizations with
the potential of surveying public opinions or emotions for the products and events associated with them.
Objective:
In this paper, we propose the application of a deep learning architecture namely the Convolution
Neural Network. The proposed model is implemented on benchmark Twitter corpus (SemEval 2016 and
SemEval 2017) and empirically analyzed with other baseline supervised soft computing techniques. The
pragmatics of the work includes modelling the behavior of trained Convolution Neural Network on wellknown
Twitter datasets for sentiment classification. The performance efficacy of the proposed model has
been compared and contrasted with the existing soft computing techniques like Naïve Bayesian, Support
Vector Machines, k-Nearest Neighbor, Multilayer Perceptron and Decision Tree using precision, accuracy,
recall, and F-measure as key performance indicators.
Methods:
Majority of the studies emphasize on the utilization of feature mining using lexical or syntactic
feature extraction that are often unequivocally articulated through words, emoticons and exclamation marks.
Subsequently, CNN, a deep learning based soft computing technique is used to improve the sentiment classifier’s
performance.
Results:
The empirical analysis validates that the proposed implementation of the CNN model outperforms
the baseline supervised learning algorithms with an accuracy of around 87% to 88%.
Conclusion:
Statistical analysis validates that the proposed CNN model outperforms the existing techniques
and thus can enhance the performance of sentiment classification viability and coherency.
Publisher
Bentham Science Publishers Ltd.
Reference47 articles.
1. Kumar A.; Abraham A.; Opinion mining to assist user acceptance testing for open-beta versions. J Information Assurance Security 2017,12,146-153
2. Kumar A.; Sebastian T.M.; Machine learning assisted sentiment analysis Proceedings of International Conference on Computer Science 2012,123-130
3. Kumar A.; Dogra P.; Dabas V.; Emotion analysis of Twitter using opinion mining Eighth International Conference on Contemporary Computing (IC3), (IEEE 2015) 2015,285-290
4. A. Kumar; A. Joshi; Ontology driven sentiment analysis on social web for government intelligence Proceedings of the Special Collection on eGovernment Innovations in India ACM 2017,134-139
5. Allahyari M.; Pouriyeh S.; Assefi M.; Safaei S.; Trippe E.D.; Gutierrez J.B.; Kochut K.; A brief survey of text mining: Classification, clustering and extraction techniques , arXiv preprint arXiv:170702919 2017
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献