The Application of the Positive Semi-Definite Kernel Space for SVM in Quality Prediction

Author:

Meng Wang1,Hongyan Dui2,Shiyuan Zhou1,Zhankui Dong1,Zige Wu1

Affiliation:

1. School of Business, Henan University, Jinming Road, Kaifeng, 475004, China

2. School of Management Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Background: A transformation toward 4th Generation Industrial Revolution (Industry 4.0) is being led by Germany based on Cyber-Physical System-enabled manufacturing and service innovation. Smart manufacturing is an important feature of Industry 4.0 which uses the networked manufacturing systems for smart production. Current manufacturing systems (5M1E systems) require deeper mining of the data which is generated from manufacturing process. Objective: To map low-dimensional embedding into the input space would meet the requirement of “kernel trick” to solve a problem in feature space. On the other hand, the distance can be calculated more precisely. Methods: In this research, we proposed a positive semi-definite kernel space by using a constant additive method based on a kernel view of ISOMAP. There were 6 steps in the algorithm. Results: The classification precision of KMLSVM was better than SVM in the enterprise data set, in which SVM selected the RBF kernel and optimized its parameters. Conclusion: We adopted the additive constant method in kernel space construction and the positive semi-definite kernel was built. The typical mixed data set of an enterprise was used in simulation. We compared the SVM and KMLSVM in this data set and optimized the SVM kernel function parameters. The simulation results demonstrated the KMLSVM was a better algorithm in mix type data set than SVM.

Funder

Philosophy and Social Sciences Planning Project of Henan Province

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3