A Dynamic Task Scheduling Algorithm for Cloud Computing Environment

Author:

Ben Alla Hicham1,Ben Alla Said1,Ezzati Abdellah1

Affiliation:

1. LAVETE laboratory, Mathematics and Computer Science Department, Science and Technical Faculty, Hassan University, Settat, 26000, Morocco

Abstract

Background: Cloud computing environment is a novel paradigm in which the services are hosted, delivered and managed over the internet. Tasks scheduling problem in the cloud has become a very interesting research area. However, the problem is more complex and challenging due to the dynamic nature of cloud and users’ needs as well as cloud providers’ requirements including the quality of service, users’ priorities and computing capabilities. Objective: The main objective is to solve the problem of tasks scheduling through an algorithm which can not only improves the client satisfaction, but also allows cloud service provider to gain maximum profit and ensure that the cloud resources are utilized efficiently. Method: (a) Optimization of the waiting time and the queue length. Methods: (a) Optimization of the waiting time and the queue length. (b) Distribution of all requests into a novel queueing system in a dynamic manner based on a decision threshold. (c) Assignment of requests to VMs based on Particle Swarm Optimization and Simulated Annealing algorithms. (d) Incorporation of the priority constraint in the scheduling process by considering three priorities levels including the tasks, queues and VMs. Results: The results comparison of our algorithm with particle swarm optimization and First Come First Serve algorithms demonstrate the effectiveness of our algorithm in terms of waiting time, makespan, resources utilization and degree of imbalance. Conclusion: This study introduces an efficient strategy to schedule users’ tasks by using dynamic dispatch queues and particle swarm optimization with simulated annealing algorithms. Moreover, it incorporates the priority issue in the scheduling process.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3