Recent Advances in Computer-aided Antiviral Drug Design Targeting HIV-1 Integrase and Reverse Transcriptase Associated Ribonuclease H

Author:

Yang Fengyuan1,Yang Jingyi1,Zhang Zhao1,Tu Gao1,Yao Xiaojun2,Xue Weiwei1,Zhu Feng1

Affiliation:

1. School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China

2. State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China

Abstract

: Acquired immunodeficiency syndrome (AIDS) has been a chronic, life-threatening disease for a long time. However, a broad range of antiretroviral drug regimens are applicable for the successful suppression of virus replication in human immunodeficiency virus type 1 (HIV-1) infected people. The mutation-induced drug resistance problems during the treatment of AIDS forced people to continuously look for new antiviral agents. HIV-1 integrase (IN) and reverse transcriptase associated ribonuclease (RT-RNase H), two pivotal enzymes in HIV-1 replication progress, has gain popularity as drug-able targets for designing novel HIV-1 antiviral drugs. During the development of HIV-1 IN and/or RT-RNase H inhibitors, computer-aided drug design (CADD), including homology modeling, pharmacophore, docking, molecular dynamics (MD) simulation, and binding free energy calculation, represents a significant tool to accelerate the discovery of new drug candidates and reduce costs in antiviral drug development. In this review, we summarized the recent advances in the design of single-and dual-target inhibitors against HIV-1 IN or/and RT-RNase H as well as the prediction of mutation-induced drug resistance based on computational methods. We highlighted the results of the reported literature and proposed some perspectives on the design of novel and more effective antiviral drugs in the future.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3