Affiliation:
1. School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
2. State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
Abstract
:
Acquired immunodeficiency syndrome (AIDS) has been a chronic, life-threatening disease for a long time. However, a broad range of antiretroviral drug regimens are applicable for the successful suppression of virus replication in human immunodeficiency virus type 1 (HIV-1) infected people. The mutation-induced drug resistance problems during the treatment of AIDS forced people to continuously look for new antiviral agents. HIV-1 integrase (IN) and reverse transcriptase associated ribonuclease (RT-RNase H), two pivotal enzymes in HIV-1 replication progress, has gain popularity as drug-able targets for designing novel HIV-1 antiviral drugs. During the development of HIV-1 IN and/or RT-RNase H inhibitors, computer-aided drug design (CADD), including homology modeling, pharmacophore, docking, molecular dynamics (MD) simulation, and binding free energy calculation, represents a significant tool to accelerate the discovery of new drug candidates and reduce costs in antiviral drug development. In this review, we summarized the recent advances in the design of single-and dual-target inhibitors against HIV-1 IN or/and RT-RNase H as well as the prediction of mutation-induced drug resistance based on computational methods. We highlighted the results of the reported literature and proposed some perspectives on the design of novel and more effective antiviral drugs in the future.
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献