Better Performance with Transformer: CPPFormer in precise prediction of cell-Penetrating Peptides

Author:

Xue Yuyang1ORCID,Ye Xiucai1ORCID,Wei Lesong1,Zhang Xin2,Sakurai Tetsuya1ORCID,Wei Leyi2

Affiliation:

1. Department of Computer Science, University of Tsukuba, Tsukuba, Japan

2. School of Software, Shandong University, Jinan, China

Abstract

: With its superior performance, the Transformer model, which is based on the 'Encoder-Decoder' paradigm, has become the mainstream in natural language processing. On the other hand, bioinformatics has embraced machine learning and made great progress in drug design and protein property prediction. Cell-penetrating peptides (CPPs) are one kind of permeable protein that is convenient as a kind of 'postman' in drug penetration tasks. However, a small number of CPPs have been discovered by research, let alone practical applications in drug permeability. Therefore, correctly identifying the CPPs has opened up a new way to take macromolecules into cells without other potentially harmful materials in the drug. Most of the previous work only uses trivial machine learning techniques and hand-crafted features to construct a simple classifier. In CPPFormer, we learn from the idea of implementing the attention structure of Transformer, rebuilding the network based on the characteristics of CPPs according to its short length, and using an automatic feature extractor with a few manual engineered features to co-direct the predicted results. Compared to all previous methods and other classic text classification models, the empirical result has shown that our proposed deep model-based method has achieved the best performance of 92.16% accuracy in the CPP924 dataset and has passed various index tests.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3