Friend or Foe: UCHL3 Mediated Carcinogenesis and Current Approaches in Small Molecule Inhibitors’ Development

Author:

Samy Mona Ahmed1,Abd El Fatah Nada Mohamady1,Yahia Safa Elsayed1,Arafa Reem K.2ORCID

Affiliation:

1. College of Biotechnology, Misr University for Science and Technology, Giza, Egypt

2. Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Cairo, Egypt, 12578 | Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, Egypt, 12578

Abstract

: As cancer continues to be one of the leading causes of death, various cancer treatments are being developed from traditional surgery to the more recent emergence of target therapy. However, therapy resistance is a restricting problem that needs to be overcome. Henceforth, the field of research shifts to new plausible drug targets, among which is the ubiquitin-proteasome system. This review is focused on the ubiquitin carboxyl-terminal hydrolase (UCH) protease family, which are members of Deubiquitinating enzymes (DUBs), specifically Ubiquitin carboxyl-terminal hydrolase L3 (UCHL3). DUBs regulate a broad array of regulatory processes, including cell-cycle progression, tissue development, and differentiation. DUBs are classified into seven subfamilies, including ubiquitin-specific proteases (USPs), JAB1/MPN/Mov34 metalloenzyme, ovarian tumor proteases (OTUs), Josephin and JAB1/MPN+(MJP), MIU-containing novel DUB (MINDY), zinc finger-containing ubiquitin peptidase 1 (ZUP1), and ubiquitin C-terminal hydrolases (UCHs). Having a significant role in tumorigenesis, UCHL3 is thus emerging as a therapeutic target. Knowing its involvement in cancer, it is important to understand the structure of UCHL3, its substrate specificity, and interaction to pave the way for the development of potential inhibitors. This review covers several directions of proteasome inhibitors drug discovery and small molecule inhibitors development.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3