Nanotechnology-based Colorimetric Approaches for Pathogenic Virus Sensing: A review

Author:

Filik Hayati1,Avan Asiye Aslıhan1

Affiliation:

1. Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcılar, Istanbul, Turkey

Abstract

: Fast and inexpensive virus identification protocols are paramount to hinder the further extent of pandemic diseases, minimize economic and social damages, and expedite proper clinical rehabilitation. Until now, various biosensors have been fabricated for the identification of pathogenic particles. But, they offer many difficulties. Nanotechnology resolves these difficulties and offers direct identification of pathogenic species in real-time. Among them, nanomaterial based-colorimetric sensing approach of pathogenic viruses by the naked eye has attracted much awareness because of their simplicity, speed, and low cost. In this review, the latest tendencies and advancements are overviewed in detecting pathogenic viruses using colorimetric concepts. We focus on and reconsider the use of distinctive nanomaterials such as metal nanoparticles, carbon nanotubes, graphene oxide, and conducting polymer to form colorimetric pathogenic virus sensors.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3