Targeting Microenvironment of Melanoma and Head and Neck Cancers in Photodynamic Therapy

Author:

Ratkaj Ivana1ORCID,Mušković Martina1ORCID,Malatesti Nela1ORCID

Affiliation:

1. Department of Biotechnology, University of Rijeka, Croatia

Abstract

Background: Photodynamic therapy (PDT), in comparison to other skin cancers, is still far less effective for melanoma, due to the strong absorbance and the role of melanin in cytoprotection. The tumour microenvironment (TME) has a significant role in tumour progression, and the hypoxic TME is one of the main reasons for melanoma progression to metastasis and its resistance to PDT. Hypoxia is also a feature of solid tumours in the head and neck region that indicates a negative prognosis. Objective: The aim of this study was to individuate and describe systematically the main strategiesthe main strategies systematically in targeting the TME, especially hypoxia, in PDT against melanoma and head and neck cancers (HNC), and assess the current success in their application. Methods: PubMed, was used for searching, in MEDLINE and other databases were used for searching, for the most recent publications on PDT against melanoma and HNC in combination with the TME targeting and hypoxia. Results: In PDT for melanoma and HNC, it is very important to control hypoxia levels, and, amongst the different approaches, oxygen self-supply systems are often applied. Vascular targeting is promising, but to improve it, optimal drug-light interval, and formulation to increase the accumulation of the photosensitiser in the tumour vasculature, have to be established. On the other side, the use of angiogenesis inhibitors, such as those interfering with VEGF signalling are somewhat less successful than expected and need to be further investigated. Conclusion: Combination The combination of PDT with immunotherapy by using multifunctional nanoparticles continues to develop and seems to be the most promising for achieving a complete and lasting antitumour effect.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3