Recent Multi-target Approaches on the Development of Anti-Alzheimer's Agents Integrating Metal Chelation Activity

Author:

Chaves Sílvia1ORCID,Várnagy Katalin2ORCID,Santos M. Amélia1ORCID

Affiliation:

1. Centro de Quimica Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal

2. Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary

Abstract

Alzheimer´s disease (AD) is the most common and severe age-dependent neurodegenerative disorder worldwide. Notwithstanding the large amount of research dedicated to both the elucidation of this pathology and the development of an effective drug, the multifaceted nature and complexity of the disease are certainly a rationale for the absence of cure so far. Currently available drugs are used, mainly to compensate the decline of the neurotransmitter acetylcholine by acetylcholinesterase (AChE) inhibition, though they only provide temporary symptomatic benefits and cannot stop AD progression. Although the multiple factors that contribute to trigger AD onset and progression are not yet fully understood, several pathological features and underneath pathways have been recognized to contribute to its pathology, such as metal dyshomeostasis, protein misfolding, oxidative stress and neurotransmitter deficiencies, some of them being interconnected. Thus, there is widespread recent interest in the development of multitarget-directed ligands (MTDLs) for simultaneous interaction with several pathological targets of AD. In this review, a selection of the most recent reports (2016-up to present) on metal chelators of MTDLs with multifunctionalities is presented. These compounds enable the hitting of several AD targets or pathways, such as modulation of specific biometal ions (e.g., Cu, Fe, Zn) and of protein misfolding (β-amyloid and tau protein), anti-oxidant activity and AChE inhibition. The properties found for these hybrids are discussed in comparison with the original reference compounds, some MTDLs being outlined as leading compounds for pursuing future studies in view of efficient potential applications in AD therapy.

Funder

COST Action, NECTAR, supported by COST

Hungarian Scientific Research Fund

Fundação para a Ciência e Tecnologia

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3