Latest Advances in Hydrogel-Based Drug Delivery Systems for Optimization of Metabolic Syndrome Treatment

Author:

Arauna Diego1ORCID,Vijayakumar Sekar2ORCID,Durán-Lara Esteban1ORCID

Affiliation:

1. Departamento de Microbiologia, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile

2. Marine College, Shandong University, Weihai, 264209, China

Abstract

Background: Drug delivery systems such as hydrogels have become relevant in cardiovascular and metabolic therapies due to their sustained and controlled release properties of drugs, versatile polymer structures, safety and biodegradability. Results: The literature presented demonstrates that a hydrogel-based controlled release system increases the therapeutic efficacy in different components of the metabolic syndrome. Hypertension has been the most explored component with advances in in vitro and murine models. However, clinical evidence in humans is scarce, and more translational studies are needed. Hydrogel-based systems for diabetes, obesity, and dyslipidemia have been little explored. Observations mainly demonstrated an increase in therapeutic efficacy, in vitro and in vivo, for the use of insulin, leptin, and natural components, such as epigallocatechin gallate. In all cases, the hydrogel systems achieve better plasma levels of the loaded compound, higher bioavailability, and low cytotoxicity compared to conventional systems. Also, the evidence existing suggests that the development of an injectable hydrogel system for controlled release of drugs or therapeutic compounds is presented as an attractive option for MeS treatment, and due to the possibility of sustained pharmacological release, there is no need for repeated doses and a safe administration route. Conclusion: The following review aims to evaluate the use of the hydrogel systems in the therapy of diabetes, obesity, hypertension, and dyslipidemia, which are the main components of metabolic syndrome.

Funder

ANID FONDECYT

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3