Nucleoside and Non-nucleoside IMP Dehydrogenase- Inhibitors as Antitumor and Antiviral Agents

Author:

Franchetti Palmarisa1,Grifantini Mario

Affiliation:

1. Dipartimento di Scienze Chimiche, Universita di Camerino, ViaS. Agostino 1, 62032 Camerino, Italy

Abstract

IMP dehydrogenase (IMPDH) is an enzyme which catalyzes the NAD-dependent conversion of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) at the metabolic branch point in the de novo purine nljcleotide synthetic pathway. IMPDH was shown to be increased significantly in cancer cells and therefore considered to be a sensitive target for cancer chemotherapy. By blocking the conversion of IMP to XMP, IMPDH inhibitors lead to depletion of the guanylate (GMP, GDP, GTP and dGTP) pools. Two isoforms of human IMPDH, designed type I and type II, have been identified and sequenced. Type I is constitutively expressed and is the predominant isoform in normal cells, while type II is selectively up-regulated in neoplastic and replicating cells. Two types of IMPDH inhibitors, endowed with antineoplastic, antiviral and immunosoppressive activity, have been discovered so far: nucleoside inhibitors, such as ribavirin and tiazofurin, and non-nucleoside, such as mycophenolic acid. Ribavirin produces IMPDH inhibition via its anabolite 5'­ monophosphate. Tiazofurin inhibits the enzyme after metabolic conversion into thiazole-4- carboxamide adenine dinucleotide (TAD), an analogue of the cofactor NAD. It was hypothesized that the inhibitory activity of tiazofurin is due to an attractive electrostatic interaction between the heterocyclic sulphur atom and the furanose oxygen 1' which constrain rotation about the C-glycosidic bond in tiazofurin and in its active anabolite TAD. To check this hypothesis, we studied several C-nucleosides related to tiazofurin and their NAD analogues. Non-nucleoside IMPDH inhibitors are also reviewed.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3