2D Materials-Based Aptamer Biosensors: Present Status and Way Forward

Author:

Sen Raj Kumar1,Prabhakar Priyanka1,Bisht Neha1,Patel Monika1,Mishra Shruti1,Yadav Amit Kumar2,Venu Divya Vadakkumana1,Gupta Gaurav Kumar1,Solanki Pratima R.2,Ramakrishnan Seeram3,Mondal Dehipada1,Srivastava Avanish Kumar1,Dwivedi Neeraj1,Dhand Chetna1

Affiliation:

1. CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, India

2. Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India

3. Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore, 117576, Singapore

Abstract

: Current advances in constructing functional nanomaterials and elegantly designed nanostructures have opened up new possibilities for the fabrication of viable field biosensors. Two-dimensional materials (2DMs) have fascinated much attention due to their chemical, optical, physicochemical, and electronic properties. They are ultrathin nanomaterials with unique properties such as high surface-to-volume ratio, surface charge, shape, high anisotropy, and adjustable chemical functionality. 2DMs such as graphene-based 2D materials, Silicate clays, layered double hydroxides (LDHs), MXenes, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) offer intensified physicochemical and biological functionality and have proven to be very promising candidates for biological applications and technologies. 2DMs have a multivalent structure that can easily bind to single-stranded DNA/RNA (aptamers) through covalent, non-covalent, hydrogen bond, and π-stacking interactions, whereas aptamers have a small size, excellent chemical stability, and low immunogenicity with high affinity and specificity. This review discussed the potential of various 2D material-based aptasensor for diagnostic applications, e.g., protein detection, environmental monitoring, pathogens detection, etc.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3