Pathophysiological Role of Mitochondrial Potassium Channels and their Modulation by Drugs

Author:

Citi Valentina1,Calderone Vincenzo1,Martelli Alma1,Breschi Maria C.1,Testai Lara1

Affiliation:

1. Department of Pharmacy, via Bonanno 6 - 56126, Pisa, Italy

Abstract

Background: Mitochondria play a central role in ATP-generating processes. Indeed, in mammalian tissues, up to 90% of ATP is generated by mitochondria through the process of oxidative phosphorylation; furthermore, mitochondria are involved in multiple signal transduction pathways. A rapidly expanding body of literature has confirmed that mitochondria play a pivotal role in apoptosis, cardio- and neuro-protection, and various neurodegenerative disorders, ranging from Parkinson’s to Alzheimer’s disease. Mitochondria are also the targets of multiple drugs, some of these are specifically designed to affect mitochondrial function, while others have primary targets in other cellular locations but may interact with mitochondria because of the presence of numerous targets on this organelle. In this regard, mitochondrial potassium (mitoK) channels play a critical role in mitochondrial function and, consequently, in the metabolism of the whole cell. <p> Objective: To describe mitoK channels from a structural point of view and investigate their pathophysiological roles, focusing on possible specific modulators that might be useful as pharmacological tools in the treatment of various pathologies characterized by mitoK involvement. <p> Results: mitoK channels play a decisive role in several pathologies, including cardiovascular diseases, particularly in myocardial infarction and neurodegenerative diseases, and they are emerging as promising oncological targets. <p> Conclusions: mitoK channels represent novel targets, and mitoK channel modulators represent an exciting tool for pharmacological intervention against such pathological conditions.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3