Biological Therapy of Hematologic Malignancies: Toward a Chemotherapy- free Era

Author:

Klener Jr Pavel1,Etrych Tomas2,Klener Pavel1

Affiliation:

1. First Medical Department- Dept. of Hematology, First Faculty of Medicine and General University Hospital, Charles University, Czech Republic

2. Department of biomedical polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic

Abstract

:Less than 70 years ago, the vast majority of hematologic malignancies were untreatable diseases with fatal prognoses. The development of modern chemotherapy agents, which had begun after the Second World War, was markedly accelerated by the discovery of the structure of DNA and its role in cancer biology and tumor cell division. The path travelled from the first temporary remissions observed in children with acute lymphoblastic leukemia treated with single-agent antimetabolites until the first cures achieved by multi-agent chemotherapy regimens was incredibly short. Despite great successes, however, conventional genotoxic cytostatics suffered from an inherently narrow therapeutic index and extensive toxicity, which in many instances limited their clinical utilization. In the last decade of the 20th century, increasing knowledge on the biology of certain malignancies resulted in the conception and development of first molecularly targeted agents designed to inhibit specific druggable molecules involved in the survival of cancer cells. Advances in technology and genetic engineering enabled the production of structurally complex anticancer macromolecules called biologicals, including therapeutic monoclonal antibodies, antibody-drug conjugates and antibody fragments. The development of drug delivery systems (DDSs), in which conventional drugs were attached to various types of carriers including nanoparticles, liposomes or biodegradable polymers, represented an alternative approach to the development of new anticancer agents. Despite the fact that the antitumor activity of drugs attached to DDSs was not fundamentally different, the improved pharmacokinetic profiles, decreased toxic side effects and significantly increased therapeutic indexes resulted in their enhanced antitumor efficacy compared to conventional (unbound) drugs.:Approval of the first immune checkpoint inhibitor for the treatment of cancer in 2011 initiated the era of cancer immunotherapy. Checkpoint inhibitors, bispecific T-cell engagers, adoptive T-cell approaches and cancer vaccines have joined the platform so far, represented mainly by recombinant cytokines, therapeutic monoclonal antibodies and immunomodulatory agents. In specific clinical indications, conventional drugs have already been supplanted by multi-agent, chemotherapy-free regimens comprising diverse immunotherapy and/or targeted agents. The very distinct mechanisms of the anticancer activity of new immunotherapy approaches not only call for novel response criteria, but might also change fundamental treatment paradigms of certain types of hematologic malignancies in the near future.

Funder

Charles University Center of Excellence

Ministry of Education, Youth and Sports Institutional Support PROGRES

Grant Agency of the Czech Republic

Ministry of Health of the Czech Republic

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3