Anesthetic Agents and Neuronal Autophagy. What We Know and What We Don't.

Author:

Xu Lili1,Shen Jianjun2,McQuillan Patrick M.3,Hu Zhiyong4

Affiliation:

1. Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China and Department of Anesthesiology, Hangzhou First People's Hospital, Hangzhou, China

2. Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

3. Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States

4. Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China

Abstract

Background: Ethanol is known to have both γ-Aminobutyric acid agonist and Nmethyl- D-aspartate antagonist characteristics similar to commonly used volatile anesthetic agents. Recent evidence demonstrates that autophagy can reduce the development of ethanol induced neurotoxicity. Recent studies have found that general anesthesia can cause longterm impairment of both mitochondrial morphogenesis and synaptic transmission in the developing rat brain, both of which are accompanied by enhanced autophagy activity. Autophagy may play an important role in general anesthetic mediated neurotoxicity. Methods: This review outlines the role of autophagy in the development of anesthetic related neurotoxicity and includes an explanation of the role of autophagy in neuronal cell survival and death, the relationship between anesthetic agents and neuronal autophagy, possible molecular and cellular mechanisms underlying general anesthetic agent induced activation of neuronal autophagy in the developing brain, and potential therapeutic approaches aimed at modulating autophagic pathways. Results: In a time- and concentration-dependent pattern, general anesthetic agents can disrupt intracellular calcium homeostasis which enhances both autophagy and apoptosis activation. The degree of neural cell injury may be ultimately determined by the interplay between autophagy and apoptosis. It appears likely that the increase in calcium flux associated with some anesthetic agents disrupts lysosomal function. This results in an over-activation of endosomal- lysosomal trafficking causing mitochondrial damage, reactive oxygen species upregulation, and lipid peroxidation. Conclusion: Autophagy may play a role in the development of anesthetic related neurotoxicity. Understanding this may lead to strategies or therapies aimed at preventing or ameliorating general anesthetic agent mediated neurotoxicity.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3