The Tangled Mitochondrial Metabolism in Cancer: An Innovative Pharmacological Approach

Author:

Bottoni Patrizia1,Scatena Roberto2

Affiliation:

1. Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Rome, Italy

2. Department of Laboratory Medicine, Madre Giuseppina Vannini Hospital, Rome, Italy

Abstract

Background: Mitochondria are remarkably gaining significant and different pathogenic roles in cancer (i.e., to sustain specific metabolism, to activate signaling pathways, to promote apoptosis resistance, to favor cancer cell dissemination, and finally to facilitate genome instability). Interestingly, all these roles seem to be linked to the fundamental activity of mitochondria, i.e. oxidative metabolism. Intriguingly, a typical modification of mitochondrial oxidative metabolism and reactive oxygen species production/ neutralization seems to have a central role in all these tangled pathogenic roles in cancer. On these bases, a careful understanding of the molecular relationships between cancer and mitochondria may represent a fundamental step to realize therapeutic approaches blocking the typical cancer progression. The main aim of this review is to stress some neglected aspects of oxidative mitochondrial metabolism of cancer cells to promote more translational research with diagnostic and therapeutic potential. Methods: We reviewed the available literature regarding clinical and experimental studies on various roles of mitochondria in cancer, with attention to the cancer cell mitochondrial metabolism. Results: Mitochondria are an important source of reactive oxygen species. Their toxic effects seem to increase in cancer cells. However, it is not clear if damage depends on ROS overproduction and/or defect in detoxification. Failure of both these processes is likely a critical component of the cancer process and is strictly related to the actual microenvironment of cancer cells. Conclusions: Mitochondria, also by ROS production, have a fundamental pathogenetic role in promoting and maintaining cancer and its spreading. To carefully understand the tangled redox state of cancer cells mitochondria represents a fundamental step to realize therapeutic approaches blocking the typical cancer progression.

Funder

European Cooperation in Science and Technology

Catholic University

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemistry and Pharmacology of Modulators of Oxidative Stress;Current Medicinal Chemistry;2020-04-24

2. Exploring the Role of Stem Cells in Cancer Development and Progression;Annals of Cancer Research and Therapy;2020-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3