Endothelium in Aortic Aneurysm Disease: New Insights

Author:

Spartalis Eleftherios1,Spartalis Michael2,Athanasiou Antonios1,Paschou Stavroula A.3,Patelis Nikolaos1,Voudris Vassilis2,Iliopoulos Dimitrios C.1

Affiliation:

1. Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece

2. Division of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece

3. Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece

Abstract

Inflammation is recognized as a fundamental element in the development and growth of aortic aneurysms. Aortic aneurysm is correlated with aortic wall deformities and injury, as a result of inflammation, matrix metalloproteinases activation, oxidative stress, and apoptosis of vascular smooth muscle cells. The endothelial wall has a critical part in the inflammation of the aorta and endothelial heterogeneity has proven to be significant for modeling aneurysm formation. Endothelial shear stress and blood flow affect the aortic wall through hindrance of cytokines and adhesion molecules excreted by endothelial cells, causing reduction of the inflammation process in the media and adventitia. This pathophysiological process results in the disruption of elastic fibers, degradation of collagen fibers, and destruction of vascular smooth muscle cells. Consequently, the aortic wall is impaired due to reduced thickness, decreased mechanical function, and cannot tolerate the impact of blood flow leading to aortic expansion. Surgery is still considered the mainstay therapy for large aortic aneurysms. The prevention of aortic dilation, though, is based on the hinderance of endothelial dysregulation with drugs, the reduction of reactive oxygen and nitrogen species, and also the reduction of pro-inflammatory molecules and metalloproteinases. Further investigations are required to enlighten the emerging role of endothelial cells in aortic disease.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3