Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling

Author:

Saavedra Emma1,González-Chávez Zabdi1,Moreno-Sánchez Rafael1,Michels Paul A.M.2

Affiliation:

1. Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico

2. Centre for Immunity, Infection and Evolution (CIIE) and Centre for Translational and Chemical Biology (CTCB), School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland

Abstract

In the search for therapeutic targets in the intermediary metabolism of trypanosomatids the gene essentiality criterion as determined by using knock-out and knock-down genetic strategies is commonly applied. As most of the evaluated enzymes/transporters have turned out to be essential for parasite survival, additional criteria and approaches are clearly required for suitable drug target prioritization. The fundamentals of Metabolic Control Analysis (MCA; an approach in the study of control and regulation of metabolism) and kinetic modeling of metabolic pathways (a bottom-up systems biology approach) allow quantification of the degree of control that each enzyme exerts on the pathway flux (flux control coefficient) and metabolic intermediate concentrations (concentration control coefficient). MCA studies have demonstrated that metabolic pathways usually have two or three enzymes with the highest control of flux; their inhibition has more negative effects on the pathway function than inhibition of enzymes exerting low flux control. Therefore, the enzymes with the highest pathway control are the most convenient targets for therapeutic intervention. In this review, the fundamentals of MCA as well as experimental strategies to determine the flux control coefficients and metabolic modeling are analyzed. MCA and kinetic modeling have been applied to trypanothione metabolism in Trypanosoma cruzi and the model predictions subsequently validated in vivo. The results showed that three out of ten enzyme reactions analyzed in the T. cruzi anti-oxidant metabolism were the most controlling enzymes. Hence, MCA and metabolic modeling allow a further step in target prioritization for drug development against trypanosomatids and other parasites.

Funder

University of Edinburgh

Consejo Nacional de Ciencia y Tecnología

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3