The Impact of Post-Genomics Approaches in Neurodegenerative Demyelinating Diseases: The Case of Guillain-Barré Syndrome

Author:

Villar Margarita1,Mateos-Hernandez Lourdes1,de la Fuente Jose1

Affiliation:

1. SaBio. Instituto de Investigacion en Recursos Cinegeticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain

Abstract

Background: Why an autoimmune disease that is the main cause of the acute neuromuscular paralysis worldwide does not have a well-characterized cause or an effective treatment yet? The existence of different clinical variants for the Guillain-Barré syndrome (GBS) coupled with the fact that a high number of pathogens can cause an infection that sometimes, but not always, precedes the development of the syndrome, confers a high degree of uncertainty for both prognosis and treatment. In the post-genomic era, the development of omics technologies for the high-throughput analysis of biological molecules is allowing the characterization of biological systems in a degree of depth unimaginable before. In this context, this work summarizes the application of post-genomics technologies to the study of GBS. Methods: We performed a structured search of bibliographic databases for peer-reviewed research literature to outline the state of the art with regard the application of post-genomics technologies to the study of GBS. The quality of retrieved papers was assessed using standard tools and thirty-four were included in the review. To date, transcriptomics and proteomics have been the unique post-genomics approaches applied to GBS study. Most of these studies have been performed on cerebrospinal fluid samples and only a few studies have been conducted with other samples such as serum, Schwann cells and human peripheral nerve. Results and Conclusion: In the post-genomics era, transcriptomics and proteomics have shown the possibilities that omics technologies can offer for a better understanding of the immunological and pathological mechanisms involved in GBS and the identification of potential biomarkers, but these results have only shown the tip of the iceberg and there is still a long way to exploit the full potential that post-genomics approaches could offer to the study of the GBS. The integration of different omics datasets through a systems biology approach could allow network-based analyses to describe the complexity and functionality of the molecular mechanisms involved in the course of disease facilitating the discovery of novel biomarkers that could be used to improve the diagnosis, predict the disease progression, improve our understanding of the pathology, and serve as therapeutic targets for GBS.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3