Recent Progress in Polynuclear Ruthenium Complex-Based DNA Binders/Structural Probes and Anticancer Agents

Author:

Zhang Si-Qi1,Gao Li-Hua2,Zhao Hua2,Wang Ke-Zhi1

Affiliation:

1. Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China

2. School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China

Abstract

Ruthenium complexes have stood out by several mononuclear complexes which have entered into clinical trials, such as imidazolium [trans-RuCl4(1H-imidazole)(DMSO-S)] (NAMI-A) and ([Ru(II)(4,4'-dimethyl-2,2'-bipyridine)2-(2(2'-,2'':5'',2'''-terthiophene)-imidazo[4,5-f] [1,10]phenanthroline)] 2+) (TLD-1433), opening a new avenue for developing promising ruthenium-based anticancer drugs alternative to Cisplatin. Polynuclear ruthenium complexes were reported to exhibit synergistic and/or complementary effects: the enhanced DNA structural recognition and DNA binding as well as in vitro anticancer activities. This review overviews some representative polynuclear ruthenium complexes acting as DNA structural probes, DNA binders and in vitro anticancer agents, which were developed during last decades. These complexes are reviewed according to two main categories of homo-polynuclear and hetero-polynuclear complexes, each of which is further clarified into the metal centers linked by rigid and flexible bridging ligands. The perspective, challenges and future efforts for investigations into these exciting complexes are pointed out or suggested.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3