The Emerging Role of EMT-related lncRNAs in Therapy Resistance and their Applications as Biomarkers

Author:

Shirvani-Farsani Zeinab1,kichi Zahra Abedi23,Soltani Mona244,Rezaei Mina1,Rojhannezhad Mahbubeh2

Affiliation:

1. Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran

2. Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

3. Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany

4. Department of Plant Production & Genetics, Faculty of Agriculture, Zanjan University, Zanjan, Iran

Abstract

Abstract: Cancer is the world's second-largest cause of death. The most common cancer treatments are surgery, radiation therapy, and chemotherapy. Drug resistance, epithelial-- to-mesenchymal transition (EMT), and metastasis are pressing issues in cancer therapy today. Increasing evidence showed that drug resistance and EMT are co-related with each other. Indeed, drug-resistant cancer cells possess enhanced EMT and invasive ability. Recent research has demonstrated that lncRNAs (long non-coding RNAs) are non-coding transcripts which play an important role in the regulation of EMT, metastasis, and drug resistance in different cancers. However, the relationships among lncRNAs, EMT, and drug resistance are still unclear. These effects could be exerted via several signaling pathways, such as TGF-β, PI3K-AKT, and Wnt/β-catenin. Identifying the crucial regulatory roles of lncRNAs in these pathways and processes leads to the development of novel targeted therapies. We review the key aspects of lncRNAs associated with EMT and therapy resistance. We focus on the crosstalk between lncRNAs and molecular signaling pathways affecting EMT and drug resistance. Moreover, each of the mentioned lncRNAs could be used as a potential diagnostic, prognostic, and therapeutic therapy resistancefor cancer. However, the investigation of lncRNAs for clinical applications still has several challenges.

Funder

Iran National Science Foundation, Tehran, Iran

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3