The Crosstalk between Gut Microbiota, Intestinal Immunological Niche and Visceral Adipose Tissue as a New Model for the Pathogenesis of Metabolic and Inflammatory Diseases: The Paradigm of Type 2 Diabetes Mellitus

Author:

Cianci Rossella1ORCID,Franza Laura2,Massaro Maria Grazia1,Borriello Raffaele1,Tota Antonio1,Pallozzi Maria1,De Vito Francesco1,Gambassi Giovanni1

Affiliation:

1. Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy

2. Emergency Medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy

Abstract

Abstract:Gut microbiota (GM) comprises more than one thousand microorganisms between bacterial species, viruses, fungi, and protozoa and represents the main actor of a wide net of molecular interactions, involving, among others, the endocrine system, immune responses, and metabolism. GM influences many endocrine functions, such as adrenal steroidogenesis, thyroid function, sexual hormones, IGF-1 pathway and peptides, produced in the gastrointestinal system. It is fundamental in glycaemic control and obesity, while also exerting an important function in modulating the immune system and associated inflammatory disease. The result of this crosstalk in gut mucosa is the formation of the intestinal immunological niche. Visceral adipose tissue (VAT) produces about 600 different peptides and it is involved in lipid and glucose metabolism, and some immune reactions, through several adipokines. GM and VAT interact in a bidirectional fashion: while gut dysbiosis can modify VAT adipokines and hormone secretion, VAT hyperplasia modifies GM composition. Acquired or genetic factors leading to gut dysbiosis or increasing VAT (i.e., Western diet) induce a pro-inflammatory condition, which plays a pivotal role in the development of dysmetabolic and immunologic conditions, such as diabetes mellitus. Diabetes is associated with specific patterns of GM alterations, an abundance or reduction of GM species involved in controlling mucosal barrier status, glycaemic levels and exerting a pro- or anti-inflammatory activity. All these factors could explain the higher incidence of several inflammatory conditions in Western countries; furthermore, besides the specific alterations observed in diabetes, this paradigm could represent a common pathway acting in many metabolic conditions and could pave the way to new, interesting therapeutic approaches.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3