Affiliation:
1. Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an,
710061, Shaanxi, China
2. Department of Rehabilitation Medicine, Shaanxi Provincial People’s Hospital,
Xi’an, 710068, Shaanxi, China
Abstract
Background:
Histone deacetylase 3 (HDAC3) has been studied in chronic heart failure (CHF), while the regulatory mechanism of HDAC3 on the development of CHF though regulating microRNA (miR)-26b-3p/high mobility group AT-hook 2 (HMGA2) axis has not been extensively investigated. This study aimed to probe the effects of HDAC3, miR-26b-3p and HMGA2 on CHF.
Methods:
CHF rat models were established using aortic coarctation. Then the HDAC3, miR-26b-3p and HMGA2 levels in CHF rats were examined. Thereafter, the CHF rats were injected with relative oligonucleotides and plasmids of HDAC3, miR-26b-3p and HMGA2 to detect the cardiac function, inflammatory reaction, myocardial tissue pathological changes, and cardiomyocyte apoptosis. The binding relationship between miR-26b-3p and HMGA2 and the interaction between HDAC3 and miR-26b-3p were validated.
Results:
HDAC3 and HMGA2 were elevated while miR-26b-3p was decreased in CHF rats. The reduced HDAC3 or HMGA2 or enriched miR-26b-3p attenuated cardiac dysfunction, inflammatory reaction, myocardial tissue pathological changes and cardiomyocyte apoptosis in CHF rats, while the reduction of miR-26b-3p exerted the opposite effects. Furthermore, the inhibition of the miR-26b-3p or elevation of HMGA2 reversed the effect of reduced HDAC3 on mitigating CHF progression. Mechanically, miR-26b-3p targeted HMGA2 and HDAC3 bound to miR-26-3p.
Conclusion:
Downregulation of HDAC3 relieves cardiac function in CHF rats via mediating miR-26b-3p/HMGA2 axis. This study provides novel theory references and a distinct direction for the therapy strategies of CHF.
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The emerging role and mechanism of HMGA2 in breast cancer;Journal of Cancer Research and Clinical Oncology;2024-05-16