Affiliation:
1. Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
2. Jiangxi Academy of Forestry, Nanchang 33032, China
Abstract
Background:
Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer
dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific
surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics,
which make them widely used in many fields. This review aims to introduce the preparation
of CNFs-based hydrogels and their recent biomedical application advances.
Methods:
By searching the recent literatures, we have summarized the preparation methods of
CNFs, including mechanical methods and chemical mechanical methods, and also introduced the
fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and
with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels,
including scaffold materials and wound dressings.
Results:
CNFs-based hydrogels are new types of materials that are non-toxic and display a certain
mechanical strength. In the tissue scaffold application, they can provide a micro-environment for
the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound
surface and protect the wound from the external environment, thereby effectively promoting the
healing of skin tissue.
Conclusion:
By summarizing the preparation and application of CNFs-based hydrogels, we have
analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels
is still in the laboratory stage. It needs further exploration to be applied in practice. The development
of medical hydrogels with high mechanical properties and biocompatibility still poses significant
challenges.
Funder
Tianjin Enterprise Technology Commissioner Project
Key Technology Research, and Development Program of Tianjin
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献