The Structural Role of Gangliosides: Insights from X-ray Scattering on Model Membranes

Author:

Andreev Konstantin1ORCID

Affiliation:

1. Howard Hughes Medical Institute, Northwestern University, Evanston IL, United States

Abstract

Background: Gangliosides are an essential component of eukaryotic plasma membranes implicated in multiple physiological processes. Little is known about molecular mechanisms underlying the distribution and functions of membrane gangliosides. The overwhelmingly complex organization of glycocalyx impedes the structural analysis on cell surface and the interplay between the lipid components. Advanced X-ray analytical tools applicable to studying biological interfaces call for the simplistic models that mimic ganglioside-enriched cellular membranes. Objective: To summarize the mechanistic evidences of ganglioside interactions with lipid environment and biologically active ligands using high-resolution synchrotron X-ray scattering. Methods: A comprehensive review of studies published over the last decade was done to discuss recent accomplishments and future trends. Results: Langmuir monolayers represent an adequate model system to assess the effect of gangliosides on membrane structure. Grazing incidence X-ray diffraction reveals a condensation effect by gangliosides on zwitterionic phospholipids with the cooperative packing of sialo- and phosphate groups. In turn, the arrangement of negatively charged lipids in ganglioside mixture remains unchanged due to the stretched conformation of carbohydrate moieties. Upon interaction with biological ligands, such as cholera toxin and galectins, the ganglioside redistribution within the ordered regions of monolayer follows distinct mechanistic patterns. The cholera toxin pentamer attached to the oligosaccharide core induces local transition from oblique to the hexagonal lattice resulting in phase coexistence. The incorporation of the A subunit responsible for endocytosis is further promoted by the acidic environment characteristic for endosomal space. X-ray reflectivity shows in-plane orientation of galectin dimers with the spatial mismatch between the lectin binding sites and ganglioside carbohydrates to perturb ceramide alkyl chains. Recent data also demonstrate sialic acid groups to be potential targets for novel peptide mimicking anticancer therapeutics. Conclusion: Coupled with surface X-ray scattering, the membrane mimetic approach allows for better understanding the biological role of gangliosides and their potential applications.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3