Opioid Growth Factor and its Derivatives as Potential Non-toxic Multifunctional Anticancer and Analgesic Compounds

Author:

Budka Justyna1ORCID,Kowalski Szymon1ORCID,Chylinska Monika1ORCID,Dzierzbicka Krystyna2ORCID,Inkielewicz-Stepniak Iwona1ORCID

Affiliation:

1. Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland

2. Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland

Abstract

: Despite significant research progress on the pathogenesis, molecular biology, diagnosis, treatment, and prevention of cancer, its morbidity and mortality are still high around the world. The emerging resistance of cancer cells to anticancer drugs remains still a significant problem in oncology today. Furthermore, an important challenge is the inability of anticancer drugs to selectively target tumor cells thus sparing healthy cells. : One of the new potential options for efficient and safe therapy can be provided by opioid growth factor (OGF), chemically termed Met-enkephalin. It is an endogenous pentapeptide (Tyr-Gly-Gly-Phe-Met) with antitumor, analgesic, and immune-boosting properties. Clinical trials have demonstrated that OGF therapy alone, as well as in combination with standard chemotherapies, is a safe, non-toxic anticancer agent that reduces tumor size. : In this paper, we review the structure-activity relationship of OGF and its analogues. We highlight also OGF derivatives with analgesic, immunomodulatory activity and the ability to penetrate the blood-brain barrier and may be used as safe agents enhancing chemotherapy efficacy and improving quality of life in cancer patients. : The reviewed papers indicate that Met-enkephalin and its analogues are interesting candidates for the development of novel, non-toxic, and endowed with an analgesic activity anticancer drugs. More preclinical and clinical studies are needed to explore these opportunities.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3