Innovative Opioid Peptides and Biased Agonism: Novel Avenues for More Effective and Safer Analgesics to Treat Chronic Pain

Author:

Bedini Andrea1,Spampinato Santi1

Affiliation:

1. Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy

Abstract

Background: Chronic pain states are clinically relevant and yet unsolved conditions impacting on quality of life and representing an important social and economic burden; these diseases are poorly treated with the currently available drugs, being urgent the need of innovative analgesics. In this frame, novel analogues of endomorphin-1 and dermorphin emerge as promising starting points to develop innovative, more effective analgesics to treat neuropathic pain. Methods: An extensive and structured search of bibliographic databases for peer-reviewed research literature was undertaken using focused review questions; all the retrieved papers were published on prestigious international journals by the experts of the field and were carefully analyzed to collect all the information and data necessary to the conceptual framework of this review. Results: One hundred papers were included in this review; forty-one defined the up-to-date findings on neuropathic pain etiopathogenesis and its currently available treatment options. Thirty-five papers described all the advantages and drawbacks of using endomorphin-1 (23) or dermorphin (12) in the frame of neuropathic pain and outlined the most relevant advances in developing endomorphin-1 and dermorphin analogs useful as potential, innovative analgesics. Twenty-four papers provided the latest insights into exploiting biased agonism at opioid receptor as an innovative strategy to develop more effective and safer analgesics. Conclusion: This review reports that innovative opioid peptides will be of great help in better understanding the multifaceted scenario of neuropathic pain treatment, providing very interesting opportunities for the identification of novel and more effective opioid analgesics to be employed as medications.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3