Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery

Author:

Barbero Margherita1,Artuso Emma1,Prandi Cristina1

Affiliation:

1. Department of Chemistry, University Degli Studi di Torino, via P. Giuria 7-10125 Torino, Italy

Abstract

Background: Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. Methods: We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. Results: The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. Conclusion: This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3