Multi-Target-Directed Ligands Affecting Serotonergic Neurotransmission for Alzheimer’s Disease Therapy: Advances in Chemical and Biological Research

Author:

Jankowska Agnieszka1,Wesolowska Anna2,Pawlowski Maciej1,Chlon-Rzepa Grazyna1

Affiliation:

1. Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland

2. Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland

Abstract

Alzheimer's Disease (AD) is an age-related neurodegenerative disorder characterized by progressive cognitive impairments and chronic inflammation that affects over 30 million people all over the world. Most of the Alzheimer's patients also suffer from psychosis, aggression, agitation, depression, anxiety, and many other behavioral and psychological symptoms of dementia. Unfortunately, the currently available anti-AD drugs provide modest symptomatic relief, and they do not reverse the neurodegeneration. Therefore, the average life expectancy after diagnosis is between six and ten years. Research data suggest that multi-target-directed ligands (MTDLs) give an opportunity to prevent, halt, or reverse the progression of AD, and reduce the symptoms of the disease. The aim of this review is to update the most recent reports on the development of MTDLs affecting serotonergic neurotransmission as potential drugs for both symptomatic and disease-modifying therapy of AD. Multifunctional modulators of serotonergic system exerted procognitive, antipsychotic, antidepressant, and/or anxiolytic properties in preclinical studies. Some of them revealed their potential as modulators of tau phosphorylation or amyloid beta aggregation with neuroprotective, anti-inflammatory, and/or antioxidant properties. Among them, lumateperone - an inhibitor of serotonin transporter with a high affinity for serotonergic and dopaminergic receptors is currently being tested in clinical trials in patients with dementia, bipolar depression, or schizophrenia. The high therapeutic potential of MTDLs as anti-AD drugs seems to be the result of their involvement in multiple neurotransmitter systems and intracellular signaling pathways.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3