Known Triterpenes and their Derivatives as Scaffolds for the Development of New Therapeutic Agents for Cancer

Author:

Peron Gregorio1,Marzaro Giovanni1,Dall`Acqua Stefano1

Affiliation:

1. Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy

Abstract

Background: Plants produce several bioactive secondary metabolites whose are used as therapeutic agents to treat several diseases, among whom cancer. Triterpenes are secondary metabolites that exert inhibitory activity against multiple intracellular and extracellular targets in euchariotic cells. These targets are proteins involved in apoptosis, cell development and differentiation, angiogenesis, metastasis and inflammatory processes. The inhibition of their functions leads to decreased cellular growth, differentiation and migration, resulting in antitumor activity, as shown by several authors. Furthermore, during recent years synthetic triterpenoid derivatives have also been developed to implement potency and efficacy of starting compounds, allowing the obtainment of new agents having promising anticancer activity. Objective: In this review we report the latest results regarding anticancer activity of some of the most studied triterpenes in the field, as well as of their semi-synthetic derivatives, with the aim to summarize the role of triterpenes as molecular leads for the development of new classes of antitumor agents. Methods: We focused on the most recent literature regarding triterpenes in cancer treatment, highlighting the potential of developing new drugs starting from these natural compounds. Conclusion: Several “old” triterpenes as ursolic, betulinic and oleanolic acids were recently reconsidered as model compounds for the development of innovative anticancer agents. Their activity against proteins involved in tumor development enhances the opportunity to exploit these compounds as new multi-target therapeutic agents. Furthermore, the possibility to synthetize new compounds from their natural-occurring structures could be an alternative to overcome cellular resistance to drugs and could improve their therapeutic efficacy.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3