Recent Advances in Superparamagnetic Iron Oxide Based Nanoprobes as Multifunctional Theranostic Agents for Breast Cancer Imaging and Therapy

Author:

Zheng Jianjun1,Ren Wenzhi2,Chen Tianxiang2,Jin Yinhua1,Li Aijing1,Yan Kun1,Wu Yijiao1,Wu Aiguo2

Affiliation:

1. Department of Medical Imaging, Ningbo No.2 Hospital, Ningbo, Zhejiang, 315010, China

2. Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China

Abstract

Background: Breast cancer accounts for nearly one in three cancers, and it is the most common cancer diagnosed among women. The death rate of breast cancer is estimated to be 14%. Hence, accurate diagnosis in early stage and effective treatment in any stage are critical for the survival of breast cancer. Mammogram has been the most common technique administered to detect breast cancer. However, the radiation dose from mammogram is harmful to patients. Fortunately, magnetic resonance imaging (MRI) can diagnose breast cancer without any radiation dose, and enhanced MRI can make earlier and differential diagnosis. Therefore, as contrast materials, superparamagnetic iron oxide based nanoprobes (SPIONs) have generated a great deal of attention. Objective: This review covers recent advances in SPIONs as multifunctional theranostic agents. Methods: Besides synthesis and surface modification of SPIONs, passive and active targeted imaging is also discussed. Moreover, a serial of potential therapy for breast cancer is further described, such as photodynamic therapy, photothermal therapy, chemotherapy and magnetic hyperthermia therapy. Conclusion: Preparation and surface modification of SPIONs is critical for imaging diagnosis of breast cancer and further potential treatment.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3