Expression Analysis of 4-Hydroxynonenal Modified Proteins in Schizophrenia Brain; Relevance to Involvement in Redox Dysregulation

Author:

Manzoor Sobia1,Khan Ayesha1,Hasan Beena1,Mushtaq Shamim2,Ahmed Nikhat1

Affiliation:

1. Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan

2. Department of Biochemistry, Ziauddin University, Karachi, Pakistan

Abstract

Background: Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to oxidative stress. Conversely, implications of oxidative stress points towards an alteration in HNE-protein adducts and activities of enzymatic and antioxidant systems in schizophrenia. Objectives: Present study focuses on identification of HNE-protein adducts and its related molecular consequences in schizophrenia pathology due to oxidative stress, particularly lipid peroxidation. Material and Methods: Oxyblotting was performed on seven autopsied brain samples each from cortex and hippocampus region of schizophrenia patients and their respective normal healthy controls. Additionally, thiobarbituric acid substances (TBARS), reduced glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also estimated. Results: Obtained results indicates substantially higher levels of oxidative stress in schizophrenia patients than healthy control group represented by elevated expression of HNE-protein adducts. Interestingly, hippocampus region of schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876 ± 1.7123) whereas decrease in antioxidant GSH levels (0.213 ± 0.015µmol/ml) have been observed in SZ brain. Elevated TBARS level (0.3801 ± 0.0532ug/ml) were obtained in brain regions SZ patients compared with their controls that reflects an increased lipid peroxidation (LPO). Conclusion: Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of schizophrenia. Our data revealed increase lipid peroxidation as a consequence of increased TBARS production. Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative stress in schizophrenia pathology.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3