The Epidemiological and Pangenome Landscape of Staphylococcus aureus and Identification of Conserved Novel Candidate Vaccine Antigens

Author:

Naz Kanwal1,Ullah Nimat1,Naz Anam2,Irum Sidra1,Dar Hamza Arshad1,Zaheer Tahreem1,Shahid Fatima1ORCID,Ali Amjad1

Affiliation:

1. Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

2. Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan

Abstract

Background and Objective: Staphylococcus aureus (S. aureus) is a gram-positive bacterium and one of the major nosocomial pathogen. It has the ability to acquire resistance against almost all available classes of antibiotics; Methicillin-Resistant S. aureus (MRSA) is a well-known antibiotic resistance. S. aureus is a globally distributed pathogen that need in-depth epidemiological and genomic level investigation for proper treatment and prevention. Methods: To explore the genomic epidemiology of S. aureus in-silico Multi Locus Sequence Typing (MLST) was carried out for 355 complete genomes. Diversity within the species was investigated through pan-genome analysis and subtractive genomic approach was employed for identification of core immunogenic targets. Results: Epidemiological study identified 62 different sequence types (STs) of S. aureus distributed worldwide, in which ST-8, ST-5, ST-398, ST-239, and ST-30 are the most dominant STs comprising more than 50% of the isolates. The pan-genome of S. aureus is still open with 7,199 genes and there is a major contribution (80%) of MRSA strains in the S. aureus species pangenome. The core genome (2,025 genes) of S. aureus is almost stable (comprises of 72% of S. aureus genome size) while accessory and unique genes (28% of S. aureus genome size) are gradually increasing. Screening of 2,025 core genes identified putative vaccine candidates. The best scoring and dominant B-cell and T-cell epitopes were predicted out of the selected potential vaccine candidate proteins with the help of a multi-step screening procedure. Conclusion: We believe that the current study will provide insight into the genetic epidemiology and diversity of S. aureus and the predicted epitopes against the pathogen can be tested further for its immunological responses within the host and may provide both humoral and cellular immunity against the disease.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3