Inhibitory as well as Disaggregation Potential of Selected Hydroxy Benzoic Phytochemicals on Hen Egg-White Lysozyme Amyloidogenesis

Author:

Mandal Hitesh1,Basak Arbin1,Prabhu Taraka1,Kolli Vidyalatha1,Sarkar Nandini1ORCID

Affiliation:

1. Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India

Abstract

Background: Amyloids are a class of ordered protein aggregates which have been implicated in the onset of several degenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Type II diabetes, and so on. Despite extensive research, the exact mechanism and the driving factors for the amyloidogenesis process remain elusive. Identifying molecules which can effectively inhibit and/or disaggregate the fibrils may be one effective therapeutic strategy against amyloidosis. Objectives: In the current study, few hydroxy-benzoic phytochemicals were selected to study their effects on the formation as well as disaggregation of Hen Egg-White Lysozyme (HEWL) amyloids, namely gallic acid, syringic acid, vanillic acid, and iso-vanillic acid. Method: Amyloidogenesis was monitored using methods like the thioflavin T assay, Field Emission Scanning Electron Microscopy (FESEM), and dynamic light scattering (DLS) studies. Further protein conformational changes were monitored using methods like 8-Anilino-Naphthalene-1-Sulfonate (ANS) fluorescence, Circular Dichroism (CD) spectroscopy, and guanidine hydrochloride mediated stability studies. Computational approach was also employed to get an insight on the interaction( s) between the selected compounds and HEWL using docking studies. Result: The selected compounds exhibited significant inhibitory as well as disaggregation effects on HEWL amyloids. In-teraction with the phytochemicals was also associated with considerable conformational changes in HEWL. Docking studies show role of hydrogen bonding between HEWL and the phytochemicals. Conclusion: Thus the current study throws light on the key factors that drive amyloid formation and hence will be helpful for development of effective therapeutics against amyloidosis.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3