Proteomics Analysis of Salt Responsive Proteins in Alfalfa (Medicago sativa L.) Leaves by Two Dimensional Electrophoresis and MALDI-TOF MS.

Author:

Hosseini Maryam1ORCID,Toorchi Mahmoud1ORCID,Vahed Mohammad Moghaddam1ORCID,Monirifar Hassan2ORCID

Affiliation:

1. Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

2. Horticulture and Crops Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran

Abstract

Background: Salinity is a major abiotic stress that limits plant growth and development. Salinity affects several physiological and biochemical characteristics adversely, which results in oxidative stress in plant species. Plants change the protein pattern to cope with salinity stress. The identified salt-responsive proteins in alfalfa are involved in energy and metabolism, photosynthesis, regulation of carbohydrates, transcription/translation, signal transduction, stress/redox homeostasis, ion binding, and stress and defense with ROS scavenging and detoxification. Objective: The present research aimed to study the response of two contrasting alfalfa varieties to salt stress, and to identify the altered leaf proteins by two-dimensional gel electrophoresis and MALDI-TOF/TOF/MS spectrometry. Methods: Salinity stress significantly decreased shoot fresh and dry weights in both Synthetic II (salt-tolerant) and Khajeh (salt-sensitive) varieties, and K+/Na+ ratio in Khajeh, while it significantly increased K+/Na+ ratio, soluble sugars, chlorophyll a and catalase activity in Synthetic II, and peroxidase activity in Khajeh. Conclusions: Salinity stress reduced the yield of alfalfa, but the reduction was more pronounced in the sensitive variety of Khajeh. The salinity-tolerant variety, Synthetic II, responded better to salinity stress in terms of K+/Na+ ratio, soluble sugars, chlorophyll a and catalase activity as compared to Khajeh. Proteome analysis showed that the proteins involved in energy metabolism, transcription/- translation, photosynthesis, electron transfer, and defense were more important than other functional categories under salinity stress. These proteins mainly increased in the salt-tolerant variety, whereas they decreased in the salt-sensitive variety.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3