Affiliation:
1. Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Tabriz University of Medical Sciences Tabriz, Iran
2. Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
3. Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran
Abstract
Aims:
The purpose of this study was to screen the bacteria producing cellulase enzymes and
their bioinformatics studies.
Background:
Cellulose is a long-chain polymer of glucose that hydrolyzes by cellulases to glucose
molecules. In order to design the new biotechnological applications, some strategies have been used as
increasing the efficiency of enzyme production, generating cost-effective enzymes, producing stable
enzymes and identification of new strains.
Objective:
On the other hand, some bacteria special features have made them suitable candidates for the
identification of the new source of enzymes. In this regard, some native strains of bacteria were screened.
Methods:
These bacteria were grown on a culture containing the liquid M9 media containing CMC to
ensure the synthesis of cellulase. The formation of a clear area in the culture medium indicated decomposition
of cellulose. In the following, the DNA of these bacteria were extracted and their 16S rDNA
genes were amplified.
Result:
The results show that nine samples were able to synthesize cellulase. In following, these strains
were identified using 16S rDNA. The results show that these screened bacteria belonged to the Bacillus
sp., Alcaligenes sp., Alcaligenes sp., and Enterobacter sp.
Conclusion:
The enzyme activity analysis shows that the Bacillus toyonensis, Bacillus sp. strain
XA15-411 Bacillus cereus have produced the maximum yield of cellulases. However, these amounts
of enzyme production in these samples are not proportional to their growth rate. As the bacterial
growth chart within 4 consecutive days shows that the Alcaligenes sp. Bacillus cereus, Bacillus
toyonensis, Bacillus sp. strain XA15-411 have a maximum growth rate. The study of the phylogenetic
tree also shows that Bacillus species are more abundant in the production of cellulase enzyme. These
bioinformatics analyses show that the Bacillus species have different evolutionary relationships and
evolved in different evolutionary time. However, for maximum cellulase production by this bacteria,
some information as optimum temperature, optimum pH, carbon and nitrogen sources are needed for
the ideal formulation of media composition. The cellulase production is closely controlled in microorganisms
and the cellulase yields appear to depend on a variety of factors. However, the further studies
are needed for cloning, purification and application of these new microbial cellulases in the different
commercial fields as in food, detergent, and pharmaceutical, paper, textile industries and also various
chemical industries. However, these novel enzymes can be further engineered through rational design
or using random mutagenesis techniques.
Publisher
Bentham Science Publishers Ltd.
Subject
Molecular Biology,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献