High Altitude Hypoxia

Author:

Babar Asma1ORCID,Mengal Kifayatullah1,Babar Abdul Hanan2,Wu Shixin1,Shah Mujahid Ali1,Xu Chuanfei1,Luo Xuegang1,Cai Xin1

Affiliation:

1. School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China

2. School of Environmental Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China

Abstract

The world's highest and largest altitude area is called the Qinghai-Tibetan plateau QTP, which harbors unique animal and plant species. Mammals that inhabit the higher altitude regions have adapted well to the hypoxic conditions. One of the main stressor at high altitudes is hypoxia. Metabolic responses to hypoxia play important roles in cell survival strategies and some diseases. However, the homeostatic alterations that equilibrate variations in the demand and supply of energy to maintain organismal function in a prolonged low O2 environment persist partly in understood, making it problematic to differentiate adaptive from maladaptive responses in hypoxia. Tibetans and yaks are two perfect examples innate to the plateau for high altitude adaptation. By the scan of the whole-genome, EPAS1 and EGLN1 were identified as key genes associated with sustained hemoglobin concentration in high altitude mammals for adaptation. The yak is a much more ancient mammal that has existed on QTP longer than humans. It is, therefore, possible that natural selection represented a diverse group of genes/pathways in yaks. Physiological characteristics are extremely informative in revealing molecular networks associated with inherited adaptation, in addition to the whole-genome adaptive changes at the DNA sequence level. Gene-expression can be changed by a variety of signals originating from the environment, and hypoxia is the main factor amongst them. The hypoxia-inducible factors (HIF-1α and EPAS1/HIF-2α) are the main regulators of oxygen in homeostasis, which play a role as maestro regulators of adaptation in the hypoxic reaction of molecular mechanisms. The basis of this review is to present recent information regarding the molecular mechanism involved in hypoxia that regulates candidate genes and proteins. Many transcriptional responses toward hypoxia are facilitated by HIFs that change the number of gene expressions and help in angiogenesis, erythropoiesis, metabolic reprogramming, and metastasis. HIFs also activate several signals highlighting a strong association between hypoxia, the misfolded proteins’ accumulation in the endoplasmic reticulum in stress, and activation of Unfolded Protein Response (UPR). It was observed that at high-altitudes, pregnancies yield a low birth weight 100 g per1000 m of the climb. It may involve variation in the events of energy-demand, like protein synthesis. Prolonged hypobaric hypoxia causes placental ER stress, which, in turn, moderates protein synthesis and reduces proliferation. Further, Cardiac hypertrophy by cytosolic Ca2+ raises and Ca2+/calmodulin, calcineurin stimulation, NF-AT3 pathway might be caused by an imbalance in Sarcoplasmic reticulum ER Ca2+, which might be adaptive in the beginning but severe later on.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3