Computer-Aided Design of a Novel Poly-Epitope Protein in Fusion with an Adjuvant as a Vaccine Candidate Against Leptospirosis

Author:

Rashidian Ehsan1ORCID,Forouharmehr Ali2ORCID,Nazifi Narges3ORCID,Jaydari Amin1ORCID,Shams Nemat1ORCID

Affiliation:

1. Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran

2. Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

3. Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Background: Leptospirosis is a prevalent zoonotic disease caused by Leptospira interrogans bacterium. Despite the importance of this disease, traditional strategies including attenuated and inactivated vaccines have not been able to prevent leptospirosis. Objective: Hence, this study was designed to develop a novel poly-epitope fusion protein vaccine against Leptospirosis. Methods: To do so, the best epitopes of OmpA, LipL45, OmpL1, LipL41 and LipL21 proteins were predicted. Then, the best-predicted epitopes were applied to assemble IFN-γ, MHC I binding, B cell and MHC II binding fragments, and heparin-binding hemagglutinin adhesion was used as a molecular adjuvant. After designing the vaccine, the most important features of it, including physicochemical parameters, protein structures and protein-protein interaction, were evaluated. Finally, the nucleotide sequence of the designed vaccine was used for codon adaptation. Results: The results showed that the designed vaccine was a stable protein with antigenicity of 0.913, which could dock to its receptor. The results also suggested that the nucleotide sequence of the designed vaccine could be expressed in the prokaryotic system. Conclusion: Based on the results of this study, it can be concluded that the vaccine can be a promising candidate to control Leptospirosis.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3