Interaction of Human Herpesvirus 8 Viral Interleukin-6 with Human Interleukin-6 Receptor Using In Silico Approach: The Potential Role in HHV-8 Pathogenesis

Author:

Dehghani Behzad1,Hashempour Tayebeh1,Hasanshahi Zahra1

Affiliation:

1. Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Introduction:Human Herpesvirus 8 (HHV-8) causes classical, endemic (African), and Acquired Immunodeficiency Syndrome (AIDS)-related Kaposi’s Sarcoma (KS), Body Cavity-Based Primary Effusion Lymphomas (BCBL), HHV-8-associated peritoneal Primary Effusion Lymphoma (PEL), and Multicentric Castleman’s Disease (MCD). HHV8 genome encodes several structural and non-structural proteins, among which vIL6 is a functional homologue of Interleukin-6 (IL-6). It has been established that vIL6 plays a vital role in HHV8 infections; also, it has been suggested that its function was mediated through gp130, rather than the gp80 (IL-6 receptor [IL-6R]). This study aimed to investigate the physicochemical and structural properties as well as the immunological features, and finally the interaction between vIL6 and IL6 receptor (IL6R) by using several bioinformatics tools which could provide both valuable insight into vIL6 protein and advantageous data for further studies on HHV8 inhibitors and new vaccines.Material and Methods:vIL6, human IL6 (hIL6), and IL6R were obtained from NCBI GenBank and Uniport, which were aligned by The CLC Genomics Workbench. "Signal-BLAST" and “predisi" were employed to define signal peptide; also, “Expasy’sProtParam” was used to predict physicochemical properties as well as "DiANNA", and "SCRATCH" predicted the disulfide bonds. “NetPhosK”, “DISPHOS”, “NetPhos”, ”NetNGlyc”, and ”GlycoEP” were involved to determine post-modification sites. To define immunoinformatics analysis, “BcePred”, “ABCpred”, “Bepipred”, “AlgPred”, and "VaxiJen" were used. “SOPMA”, “I-TASSER”, “GalaxyRefine”, and “3D-Refine” predicted and refined the secondary and tertiary structures. TM-align server was used to align 3D structures. In addition, docking analysis was done by “Hex 5.0.”, and finally the results were illustrated by “Discovery Studio”.Results:A signal peptide (1-22) was defined in the vIL6 sequences and analysis has shown that vIL6 is an acidic protein which is significantly stable in all organisms. Three Disulfide bonds were predicted and immunoinformatics analysis showed 5 distinct B-cell epitopes. vIL6 is predicted as a non-allergen protein and the majority of its structure consists of Alpha helix. TM-align pointed the significant similarity between vIL6 and hIL6 in protein folding. The high energy value between vIL6 protein and IL6R was calculated and further analysis illustrated 5 conserved regions as well as 4 conserved amino acids which had a significant role in vIL6 and IL6R interaction.Discussion:An in silico study by numerous software determined the possible interaction between vIL6 and IL6R and the possible role of this interaction in HHV8 pathogenesis and the progress of infection. These have been overlooked by previous studies and will be beneficial to gain a more comprehensive understanding of vIL6 function during HHV8 lifecycle and infections. Structural analysis showed the significant similarity between vIL6 and hIL6 folding which can describe the similarity of the functions or interactions of both proteins. Furthermore, several conserved regions in the interaction site which interestingly were highly conserved among all vIL6 sequences can be used as new target for vIL6 inhibitors. Moreover, our results could predict immunological properties of vIL6 which suggested the ability of this protein in induction of the humoral immune response. Such a protein may be used for further studies on therapeutic vaccine fields.

Funder

Shiraz University of Medical Sciences

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3