Pathogenic Genes Selection Model of Genetic Disease based on Network Motifs Slicing Feedback

Author:

Zhang Shengli1,Tong Zekun2,Yin Haoyu1,Feng Yifan2

Affiliation:

1. School of Mathematics and Statistics, Xidian University, Xi'an 710071, China

2. School of Computer and Technology, Xidian University, Xi'an 710071, China

Abstract

Background: Finding the pathogenic gene is very important for understanding the pathogenesis of the disease, locating effective drug targets and improving the clinical level of medical treatment. However, the existing methods for finding the pathogenic genes still have limitations, for instance the computational complexity is high, and the combination of multiple genes and pathways has not been considered to search for highly related pathogenic genes and so on. Methods: We propose a pathogenic genes selection model of genetic disease based on Network Motifs Slicing Feedback (NMSF). We find a point set which makes the conductivity of the motif minimum then use it to substitute for the original gene pathway network. Based on the NMSF, we propose a new pathogenic genes selection model to expand pathogenic gene set. Results: According to the gene set we have obtained, selection of key genes will be more accurate and convincing. Finally, we use our model to screen the pathogenic genes and key pathways of liver cancer and lung cancer, and compare the results with the existing methods. Conclusion: The main contribution is to provide a method called NMSF which simplifies the gene pathway network to make the selection of pathogenic gene simple and feasible. The fact shows our result has a wide coverage and high accuracy and our model has good expeditiousness and robustness.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3