Isolation and Biochemical Characterization of Ananassains, Cysteine Peptidases from the Fruits of Ananas ananassoides

Author:

Okayama Adriana1ORCID,Cabral Hamilton2ORCID,Gustavo Orlando Bonilla-Rodriguez1ORCID

Affiliation:

1. São Paulo State University, Institute of Biosciences, Languages and Exact Sciences (IBILCE-UNESP) São José do Rio Preto, SP, Brazil

2. University of São Paulo , School of Pharmaceutical Sciences (FCFRP-USP), (USP), Ribeirão Preto, SP, Brazil

Abstract

Aims: This work performed a preliminary characterization of two new peptidases from Ananas ananassoides. Background: Proteolytic enzymes, also known as peptidases, are found in all living things and play critical physiological roles in metabolism and cellular regulation. They account for roughly 60% of the enzymes used in industry and have high proteolytic activity, such as papain from Carica papaya latex and stem and fruit bromelains from the edible pineapple Ananas comosus. Objective: The wild pineapple Ananas ananassoides contains proteolytic enzymes, which motivated this study due to the potential applications of this type of enzyme. Methods: The fruit and stem of A. ananassoides were blended, clarified, and purified using chromatography (SP-Sepharose and Sephadex G-50). The molecular mass was determined using mass spectrometry (M.S.), and the N-terminal sequences were obtained and compared to other Bromeliaceae proteases. Fluorogenic substrates were used to determine the kinetic parameters. Results: As determined by M.S., the fruit and stem contain cysteine-peptidases with Mr of 27,329.6 and 23,912.5 Da, respectively, values that are very similar to those found in edible pineapple bromelains. Despite Mr and carbohydrate composition differences, both proteases have similar optimum pH values. They have similar temperature effects, though the stem protease is more thermally stable. Both proteases have a stronger preference for hydrophobic, polar, and basic residues. Both proteases hydrolyzed substrates containing polar and basic residues. Conclusion: A comparison of the N-terminal sequences (AVPQIIDW for fruit ananassains and AVPEIIDW for stem ananassains) reveals a high degree of homology when compared to other Bromeliaceae proteases such as papain.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3