The Antibacterial Activity of Zinc Oxide Nanoparticle-Loaded Soft Contact Lens

Author:

Gew Lai Ti1,Chew Jactty1,Tong Tommy1,Chua Mun Lok1,Mungroo Mohammad Ridwane1,Yap Yi Xing1,Misran Misni2

Affiliation:

1. Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia

2. Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia

Abstract

Introduction: Contact lenses coated with antibacterial agents may reduce the risk of microbial keratitis; however, to the best of our knowledge, such contact lenses are not available on the market. Methods: We determined the ability of zinc oxide nanoparticles (ZnO-NPs)-loaded soft contact lenses to prevent the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa. Commercially acquired sterile silicone hydrogel contact lenses were soaked in ZnO-NPs (˂50 nm) suspensions of various concentrations, and the stability of the ZnO-NPs coating on contact lenses over 28 days was monitored using a UV-vis spectrophotometer. The cytotoxicity effects of ZnO-NPs on human corneal epithelial cells were evaluated using a lactate dehydrogenase (LDH) kit. Results and Discussion: The results showed that the ZnO-NPs coating on contact lenses was optimal from day seven onward. In the following assays, optimally, ZnO-NP-coated contact lenses were incubated with S. aureus and P. aeruginosa suspensions (1 x 105 colony forming unit) for 24 hr at 37°C, followed by enumeration using the plating method. Our data showed that 100 ppm of ZnO-NPs coating on contact lenses reduced the adhesion of 69.9% and 74.6% of S. aureus and P. aeruginosa significantly (p<0.05). The confocal laser scanning microscopic analyses were consistent with our bacterial adhesion findings. Low cytotoxicity against human corneal epithelial cells was observed even at the highest concentration of 300 ppm. Conclusion: This study provides insights into the potential role of ZnO-NPs in developing contact lenses with antibacterial properties.

Funder

Sunway University in Malaysia

Fundamental Research Grant Scheme by Ministry of Higher Education (MOHE) in Malaysia

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3