Investigating Structural Requirements of Some Pyrimidine-linked Benzimidazole Derivatives as Anticancer Agents Against MCF-7 Cancerous Cell Line Through the use of 2D and 3D QSARs

Author:

Mayura Kale1,Sharuk Khan1,Jyoti Hature1

Affiliation:

1. Government College of Pharmacy, Osmanpura, Aurangabad-431005, Maharashtra, India

Abstract

Background: Cancer is an extremely fast, unrestrained and pathological propagation of cells. Yet there is no cancer treatment that is 100% efficient against scattered cancer. Heterocycles have been considered as a boon to treat several cancers of which pyrimidine is a core nucleus and holds an important place in cancer chemotherapy which is reflected in the use of drugs such as 5-fluorouracil, erlotinib, gefitinib and caneratinib. Also, many good antitumor active agents possess benzimidazoleas its core nucleus. Objective: To design novel pyrimidine-linked benzimidazoles and to explore their structural requirements related to anticancer potential. Methods: 2D and 3D Quantitative structure–activity relationship (QSAR) studies were carried out on a series of already synthesized 27 pyrimidine-benzimidazole derivatives. Results: Statistically significant and optimum 2D-QSAR model was developed by using step-wise variable multiple linear regression method, yielding correlation coefficient r2 = 0.89, cross-validated squared correlation coefficient q2 = 0.79 and external predictive ability of pred_r2 = 0.73 Best 3D-QSAR model was developed by employing molecular field analysis using step-wise variable k-nearest neighbor method which showed good correlative and predictive abilities in terms of q2 =0.77 and pred_r2= 0.93. Conclusion: These 2D and 3D models were found to give dependable indications which helped to optimize the pyrimidine-benzimidazole derivatives of the data set. The data yielded by 2D- QSAR and 3D-QSAR models will aid in giving better perceptions about structural requirements for developing newer anticancer agents.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3