Telomere DNA Binding, Cleavage and Anticancer Activity of [Cu(phendione)(Hpyramol)Cl]

Author:

Maheswari Palanisamy Uma1,Duraisamy Renuga2,Kanagavel Murugesan3,Natarajaseenivasan Kalimuthusamy3,Meera Sheriffa Begum Kadhar Mohamed1,Kandasamy Ruckmani4

Affiliation:

1. Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli � 620015, Tamilnadu, India

2. Department of Chemistry, Selvamm College of Technology, Namakkal � 637003, Tamilnadu, India

3. Department of Microbiology, Bharathidasan University, Tiruchirappalli � 620024, Tamilnadu, India

4. Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE), Bharathidasan Institute of Technology, Anna University, Tiruchirappalli 620024, Tamil Nadu, India

Abstract

Background:The ligand Hpyramol is a redox active, which on coordination with Cu(II) cleaves DNA without any added reductant. Another ligand phendione is known for its wide application towards anticancer activities. We combined the ligands with CuCl2 to have an intercalation moiety and a redox active ligand in participation towards telomere DNA cleavage and anticancer activity.Objective:In this study, our aim is to interact it with Human telomere DNA and to see their effects on cancer cells.Methods:The complex [Cu(L)(L’)Cl] has interacted with the human telomere DNA sequence (TTAGGG), HTelo20. The HTelo20 was stabilized under both parallel and antiparallel G-quadruplex conformations and the complex [Cu(L)(L’)Cl] has interacted followed by circular dichroism spectroscopy and gel electrophoresis.Results:The parallel G-quadruplex and randomly coiled conformations of HTelo20 were easily cleaved than the anti-parallel G-quadruplex conformation. The nature of DNA cleavage was found to be oxidative rather hydrolytic. The formation of phenoxyl radical species under electrochemical and controlled potential electrolysis conditions by the complex [Cu(L)(L’)Cl] proves the possibility of oxidative nature of DNA cleavage. The comet assay also proves the DNA cleavage induced by the complex [Cu(L)(L’)Cl] inside the nucleus of HeLa cancer cells.Conclusion:The complex [Cu(L)(L’)Cl] was tested for anticancer activity, induced by ROS and DNA cleavage. The IC50 values resulted in nanomolar concentrations with selected cancer cell lines. Relatively the Cu complex shows less toxicity with the normal cell line L132.

Funder

DST WOS-A India

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3