Assessment of Various Scheduling and Load Balancing Algorithms in Integrated Cloud-Fog Environment

Author:

Jyotsna 1,Nand Parma1

Affiliation:

1. Department of Computer Science, Sharda University, Greater Noida, India

Abstract

Background: It is required to design a suitable scheduling algorithm that enhances the timely execution of goals such as load distribution, cost monitoring, and minimal time lag to react, increased security awareness, optimized energy usage, dependability, and so on. In order to attain these criteria, a variety of scheduling strategies based on hybrid, heuristic, and meta-heuristic techniques are under consideration. Objective: IoT devices and a variety of network resources make up the integrated cloud-fog environment. Every fog node has devices that release or request resources. A good scheduling algorithm is required in order to maintain the requests for resources made by various IoT devices. Method: This research focuses on analysis of numerous scheduling challenges and techniques employed in a cloud-fog context. This work evaluates and analyses the most important fog computing scheduling algorithms. Results: The survey of simulation tools used by the researchers is done. From the compared results, the highest percentage in the literature has 60% of scheduling algorithm which is related to task scheduling and 37% of the researchers have used iFogSim simulation tool for the implementation of the proposed algorithm defined in their research paper. Conclusion:: The findings in the paper provide a roadmap of the proposed efficient scheduling algorithms and can help researches to develop and choose algorithms close to their case studies.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Tolerance using Reinforcement Learning for Cloud Resource Management;Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing;2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3