Author:
Tripathy Ashutosh,More Ram Dev,Gupta Sandeep,Samuel Jastin,Singh Joginder,Prasad Ram
Abstract
Pollution control and mitigation are critical to protect the ecosystem and make everyone's life safer and healthier. Different pollution mitigation strategies and measures are implemented to remove pollutants, which broadly involve physical, chemical, and biological methods. Biological methods are found to be more sustainable, effective, and eco-friendlier than the other two methods. These methods mainly use microbes like bacteria, fungi, algae, and plants, and their products like enzymes and metabolic products to remove pollutants. Due to their unique photosynthetic ability and simple growth requirements, Algae can be grown using simpler components like CO2, sunlight, and media, making them a potential candidate to be used as a pollution mitigator. Algae can indicate and remove pollutants like CO2, SO2, NO2, and particulate matter from the air; these pollutants and particulate matter are either used for their growth or these are accumulated inside them.. Algal species have shown the efficient removal of heavy metals, organic pollutants, explosives, petroleum contaminants, pesticides, polycyclic aromatic hydrocarbons (PAHs), and plastics from different water sources. There is a lot of scope in using algae to remove organic and inorganic pollutants in wastewater treatment plants. Algae hold great potential to remove radioactive pollutants from natural resources and involve removal mechanisms like biosorption and bioaccumulation. Algae can be used with different adsorbent materials to develop adsorption systems for the adsorption of radionuclides and heavy metals. This review elucidates different algal species, their cultural conditions, the removal efficiency of different types of pollutants from the air, water, soil, and their role in genetic engineering and the algae's potential for waste mitigation.
Publisher
Bentham Science Publishers Ltd.
Subject
Biomedical Engineering,Biochemistry,Bioengineering,Biophysics,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献