De Novo Assembly and Transcriptome Profiling of Ethiopian Lowland Bamboo Oxytenanthera Abyssinica (A. rich) Munro Under Drought and Salt Stresses

Author:

Adem Muhamed,Beyene Dereje,Feyissa Tileye,Zhao Kai,Jiang Tingbo

Abstract

Background: Bamboos are perennial grasses classified under family Poaceae and subfamily Bambusoideae and are among the fastest growing plants on earth. Despite ecological and economic significances, Ethiopian lowland bamboo (O. abyssinica) lacks global gene expression under abiotic stress. Methods: Plastic pot germinated seedlings of O. abyssinica were subjected to 200 µm NaCl and 25% PEG-6000 (Poly Ethylene glycol) to induce salt and drought stress, respectively. Using the Illumina sequencing platform, fifteen cDNA libraries were constructed and sequenced to generate the first drought and salt stress transcriptome profiling of the species so as to elucidate genome-wide transcriptome changes in response to such stresses. Results: Following quality control, 754,444,646 clean paired-ends reads were generated, and then de novo assembled into 406,181 unigenes. Functional annotation against the public databases presented annotation of 217,067 (53.4%) unigenes, where NCBI-Nr 203,777, Swissport 115,741, COG 81,632 and KEGG 80,587. Prediction of Transcripts Factors (TFs) have generated 4,332 TFs organized into 64 TF families. Analysis of Differentially Expressed Genes (DEGs) provided 65,471 genes where 569 genes belong to all stresses. Protein families with a higher number of differentially expressed genes include bZIP (49), WRKY (43), MYB (38), AP2/ERF (30), HD-ZIP (25) and MYB related (21). Conclusion: In addition to revealing the genome-wide level appraisal of transcriptome resources of the species, this study also uncovered the comprehensive understanding of key stress responsive protein-coding genes, protein families and pathways which could be used as the basis for further studies.

Publisher

Bentham Science Publishers Ltd.

Subject

Biomedical Engineering,Biochemistry,Bioengineering,Biophysics,Biotechnology

Reference62 articles.

1. Chaomao H, Weiyi L, Xiong Y, Yuming Y. Bamboo for the environment and trade: Environmental Benefits of Bamboo Forests and the Sustainable Development of Bamboo Industry in Western China 2006.

2. Ramanayake SM, Meemaduma VN, Weerawardene TE. Genetic diversity and relationships between nine species of bamboo in Sri Lanka, using random amplified polymorphic DNA. Plant Syst Evol 2007; 269 (1-2) : 55-61.

3. BPG. Bamboo Phylogeny Group. An updated tribal and sub-tribal classification for the Bambusoideae (Poaceae). Procof the 9th World Bamboo Congress Gielis J, Potters G, Eds. Antwerp, Belgium. 2012; pp. In: World Bamboo Organization; 2012; 3-27.

4. Yeshambel M, Mengistu U, Getachew A. The role indigenous bamboo species (Yushania alpine and Oxytenanthera abyssinia) as ruminant feed in northwestern Ethiopia. LRRD 2011; 23 : 250-8.

5. (International Network for Bamboo and Rattan) Global Forest Resource assessment Update, Ethiopia Country Report on Bamboo Resources 2005.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3