Molecular Docking of the Terpenes in Gorgonian Corals to COX-2 and iNOS Enzymes as Anti-Inflammatory

Author:

Kelutur Faruk Jayanto1ORCID,Saptarini Nyi Mekar1ORCID,Mustarichie Resmi1ORCID,Kurnia Dikdik2ORCID

Affiliation:

1. Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia

2. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, West Java, Indonesia

Abstract

Background: The inflammatory pathway is induced by cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzymes, so it requires the development of its inhibitors, such as nonsteroidal anti-inflammatory drugs (NSAIDs), but they have side effects. Therefore, the discovery and development of natural medicine as a lead compound are needed. The gorgonian corals have been reported to contain cyclic diterpenes with anti-inflammatory activities. The specific anti-inflammatory inhibitor potential has not been reported regarding these secondary metabolites, whether in COX-2 or iNOS. Thus, the in silico method is the right alternative. Objective: This study aimed to determine the potency of fifteen terpenes of the various gorgonian corals to COX-2 and iNOS enzymes as an anti-inflammatory Methods: Molecular docking was performed using ChemDraw Ultra 12.0, Chem3D Pro 12.0, Biovia Discovery Studio 2016 Client®, Autodock Tools 4.2, prediction pharmacokinetics (Pre-ADMET), and oral administration (Lipinski rule of five). Results: Potential terpenes based on ΔG (kcal/mol) and Ki (nM) to COX-2 were gyrosanol B (-10,32; 27,15), gyrosanol A (-10,20; 33,57), echinolabdane A (-9,81; 64,76). Only nine terpenes were specific to COX-2 active sites, while for iNOS were palmonine F (-7.76; 2070), briarenol C (-7.55; 2910), and all test compounds binding to the iNOS active sites. Pre-ADMET prediction obtained that HIA was very excellent (70–100%), Caco-2 had moderate permeability (4–70 nm sec-1), and PPB had strong binding (> 90%). Eight terpenes qualified for the Lipinski rule of five. Conclusion: NOS was a specific target for terpenes based on the free energy of binding (ΔG).

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3