Combined Virtual Screening, DFT Calculations and Molecular Dynamics Simulations to Discovery of Potent MMP-9 Inhibitors

Author:

Bahrami Hamed1,Salehabadi Hafezeh2,Nazari Zahra1,Amanlou Massoud2

Affiliation:

1. Department of Chemistry, University of Zanjan, P.O. Box 45371-38791 Zanjan, Iran

2. Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176-53955, Iran

Abstract

Background: Matrix metalloproteinase-9 (MMP-9) plays a crucial role in the development and progression of cancer. Therefore, identifying its inhibitors has enjoyed numerous attentions. In this report, a hybrid approach, including pharmacophore-based virtual screening, docking studies, and density functional theory (DFT) binding energy calculations followed by molecular dynamics simulations, was used to identify potential MMP-9 inhibitors. Methods: Pharmacophore modeling based on ARP101, as a known MMP-9 inhibitor, was performed and followed by virtual screening of ZINC database and docking studies to introduce a set of new ligands as candidates for potent inhibitors of MMP-9. The binding energies of MMP-9 and the selected ligands as well as ARP101, were estimated via the DFT energy calculations. Subsequently, molecular dynamics simulations were applied to evaluate and compare the behavior of ARP101 and the selected ligand in a dynamic environment. Results: (S,Z)-6-(((2,3-dihydro-1H-benzo[d]imidazol-2-yl)thio)methylene)-2-((4,6,7- trimethylquinazolin- 2-yl)amino)-1,4,5,6-tetrahydropyrimidin-4-ol, ZINC63611396, with the largest DFT binding energy, was selected as a proper potent MMP-9 inhibitor. Molecular dynamics simulations indicated that the new ligand was stable in the active site. Conclusion: The results of this study revealed that compared to the binding energies achieved from the docking studies, the binding energies obtained from the DFT calculations were more consistent with the intermolecular interactions. Also, the interaction between the Zinc ion and ligand, in particular the Zn2+-ligand distance, played a profound role in the quantity of DFT binding energies.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3